Ekman layers of rotating fluids: The case of general initial data

Author(s):  
Nader Masmoudi
Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

The problem investigated in this part can be seen as a particular case of the study of the asymptotic behavior (when ε tends to 0) of solutions of systems of the type where Δε is a non-negative operator of order 2 possibly depending on ε, and A is a skew-symmetric operator. This framework contains of course a lot of problems including hyperbolic cases when Δε = 0. Let us notice that, formally, any element of the weak closure of the family (uε)ε>0 belongs to the kernel of A. We can distinguish from the beginning two types of problems depending on the nature of the initial data. The first case, known as the well-prepared case, is the case when the initial data belong to the kernel of A. The second case, known as the ill-prepared case, is the general case. In the well-prepared case, let us mention the pioneer paper by S. Klainerman and A. Majda about the incompressible limit for inviscid fluids. A lot of work has been done in this case. In the more specific case of rotating fluids, let us mention the work by T. Beale and A. Bourgeois and T. Colin and P. Fabrie. In the case of ill-prepared data, the nature of the domain plays a crucial role. The first result in this case was established in 1994 in the pioneering work by S. Schochet for periodic boundary conditions. In the context of general hyperbolic problems, he introduced the key concept of limiting system (see the definition on page 125). In the more specific case of viscous rotating fluids, E. Grenier proved in 1997 in Theorem 6.3, page 125, of this book. At this point, it is impossible not to mention the role of the inspiration played by the papers by J.-L. Joly, G. Métivier and J. Rauch (see for instance and). In spite of the fact that the corresponding theorems have been proved afterwards, the case of the whole space, the purpose of Chapter 5 of this book, appears to be simpler because of the dispersion phenomena.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Olaf Hohm ◽  
Vladislav Kupriyanov ◽  
Dieter Lüst ◽  
Matthias Traube

We construct L∞ algebras for general “initial data” given by a vector space equipped with an antisymmetric bracket not necessarily satisfying the Jacobi identity. We prove that any such bracket can be extended to a 2-term L∞ algebra on a graded vector space of twice the dimension, with the 3-bracket being related to the Jacobiator. While these L∞ algebras always exist, they generally do not realize a nontrivial symmetry in a field theory. In order to define L∞ algebras with genuine field theory realizations, we prove the significantly more general theorem that if the Jacobiator takes values in the image of any linear map that defines an ideal there is a 3-term L∞ algebra with a generally nontrivial 4-bracket. We discuss special cases such as the commutator algebra of octonions, its contraction to the “R-flux algebra,” and the Courant algebroid.


1967 ◽  
Vol 29 (3) ◽  
pp. 609-621 ◽  
Author(s):  
V. Barcilon ◽  
J. Pedlosky

A unified picture of the linear dynamics of rotating fluids with given arbitrary stratification is presented. The range of stratification which lies outside the region of validity of both the theories of homogeneous fluids, $\sigma S < E^{\frac{2}{3}}$ and the strongly stratified fluids, σS > E½, is studied, where σS = vαgΔT/κΩ2L and E =v/ΩL2. The transition from one dynamics to the other is elucidated by a detailed study of the intermediate region E2/3 < σS < E½. It is shown that, within this intermediate stratification range, the dynamics differs from that of either extreme case, except in the neighbourhood of horizontal boundaries where Ekman layers are present. In particular the side wall boundary layer exhibits a triple structure and is made up of (i) a buoyancy sublayer of thickness (σS)−1/4E½ in which the viscous and buoyancy forces balance, (ii) an intermediate hydrostatic, baroclinic layer of thickness (σS)½ and (iii) an outer E¼-layer which is analogous to the one occurring in a homogeneous fluid. In the interior, the dynamics is mainly controlled by Ekman-layer suction, but displays hybrid features; in particular the dynamical fields can be decomposed into a ‘homogeneous component’ which satisfies the Taylor-Proudman theorem, and into a ‘stratified component’ which is baroclinic and which satisfies a thermal wind relation. In all regions the structure of the flow is displayed in detail.


Sign in / Sign up

Export Citation Format

Share Document